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Ramsey’s theorem

KX := complete graph with vertex set X

Theorem (Ramsey, 1930)

Given a red-blue edge-colouring of KN, there is an infinite complete
monochromatic subgraph.

Proof: blackboard.
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Ordinal Ramsey numbers

Definition

Let α, β and γ be ordinals.

γ → (α, β)2

means: given a red-blue edge-colouring of Kγ , there is either
a complete red subgraph with vertex set of order type α, or
a complete blue subgraph with vertex set of order type β.

R(α, β) := least γ such that γ → (α, β)2.

Examples

R(3, 3) = 6, R(3, 4) = 9
R(ω, ω) = ω (Ramsey’s theorem)
R(α, 2) = α (for all α)
R(ω + 1, 3) = ω · 2 + 1 (blackboard)
R(ω + 1, k + 1) = ω · k + 1 (for all finite k, by induction)
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Why study R(α, k) for countable α and finite k?

Theorem (Specker, 1956)

If γ is countable, then γ 6→ (ω + 1, ω)2.

Hence if α > ω and R(α, β) is countable, then β must be finite.

Proof: put two orderings on γ: the usual one, and one of type ω.
Colour an edge xy red iff the orderings agree about x and y .

Theorem (Erdős–Milner, 1972)

If α is countable and k is finite, then R(α, k) is countable.

Jacob Hilton, University of Leeds Topological Ramsey theory of countable ordinals



Why study R(α, k) for countable α and finite k?

Theorem (Specker, 1956)

If γ is countable, then γ 6→ (ω + 1, ω)2.

Hence if α > ω and R(α, β) is countable, then β must be finite.

Proof: put two orderings on γ: the usual one, and one of type ω.
Colour an edge xy red iff the orderings agree about x and y .
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Indecomposable ordinals

Definition

We say an ordinal α is indecomposable to mean:
if α = X1 ∪ X2 ∪ · · · ∪ Xk , then some Xi has order type α.

Examples (and non-examples)

3 7

ω 3

ω · 2 7

ω2 3

Lemma

ωα is indecomposable for all α.

Proof for countable α: by induction (blackboard).
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Proof of the Erdős–Milner theorem

Theorem (Erdős–Milner, 1972)

If α is countable and k is finite, then R(α, k) is countable.

They proved: R(ω1+α, 2k) ≤ ω1+α·k .
We prove: R(ωα, k + 1) ≤ ωα·k .

Proof: blackboard.
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Topological ordinal Ramsey numbers
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γ → (α, β)2

means: given a red-blue edge-colouring of Kγ , there is either
a complete red subgraph with vertex set of order type α, or
a complete blue subgraph with vertex set of order type β.

R (α, β) := least γ such that γ → (α, β)2.

For example, a subspace X ⊆ γ is homeomorphic to ω + 1 iff X
has order type ω + 1 and maxX = sup (X \ {maxX}).
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Classical vs. topological ordinal Ramsey numbers

Let α be a countable ordinal and k be a positive integer.

Classical Topological (Caicedo–H, 2015)

ωα indecomposable ωω
α

top-indecomposable
(Weiss, 1986)

R(ω + 1, k + 1) = ω · k + 1 Rtop(ω + 1, k + 1) = ωk + 1

R(ωα, k + 1) ≤ ωα·k Rtop(ωω
α
, k + 1) ≤ ωωα·k

R(ω1+α, 2k) ≤ ω1+α·k (Rtop(ωω
α
, 2k) ≤ ωωα·k

?)
(Erdős–Milner, 1972)

algorithm to compute R(α, k) Rtop(α, k) < ωω for all α < ω2

for all α < ωω Rtop(ω2, k) ≤ ωω
(Haddad–Sabbagh, 1969) Rtop(ω2 + 1, k + 2) ≤ ωω·k + 1
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Thank you!

Thank you for your attention!

A preprint of our paper is available at
http://arxiv.org/abs/1510.00078.
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