Topological Ramsey theory of countable ordinals

Jacob Hilton, University of Leeds

Joint work with Andrés Caicedo, Mathematical Reviews

February 2016

 $K_X := \text{complete graph with vertex set } X$

Theorem (Ramsey, 1930)

Given a red-blue edge-colouring of $K_{\mathbb{N}}$, there is an infinite complete monochromatic subgraph.

 $K_X := \text{complete graph with vertex set } X$

Theorem (Ramsey, 1930)

Given a red-blue edge-colouring of $K_{\mathbb{N}}$, there is an infinite complete monochromatic subgraph.

Proof: blackboard.

Definition

Let α , β and γ be ordinals.

$$\gamma \to (\alpha, \beta)^2$$

means: given a red-blue edge-colouring of K_{γ} , there is either a complete red subgraph with vertex set of order type α , or a complete blue subgraph with vertex set of order type β .

 $R(\alpha,\beta) :=$ least γ such that $\gamma \to (\alpha,\beta)^2$.

Definition

Let α , β and γ be ordinals.

$$\gamma \to (\alpha, \beta)^2$$

means: given a red-blue edge-colouring of K_{γ} , there is either a complete red subgraph with vertex set of order type α , or a complete blue subgraph with vertex set of order type β .

 $R(\alpha, \beta) :=$ least γ such that $\gamma \to (\alpha, \beta)^2$.

Examples

R(3,3) = 6, R(3,4) = 9 $R(\omega,\omega) = \omega$ (Ramsey's theorem)

・ 戸 ト ・ 戸 ト ・ 戸 ト

Definition

Let α , β and γ be ordinals.

$$\gamma \to (\alpha, \beta)^2$$

means: given a red-blue edge-colouring of K_{γ} , there is either a complete red subgraph with vertex set of order type α , or a complete blue subgraph with vertex set of order type β .

$$R(\alpha, \beta) :=$$
least γ such that $\gamma \to (\alpha, \beta)^2$.

Examples

R(3,3) = 6, R(3,4) = 9 $R(\omega, \omega) = \omega$ (Ramsey's theorem) $R(\alpha, 2) =$

Definition

Let α , β and γ be ordinals.

$$\gamma \to (\alpha, \beta)^2$$

means: given a red-blue edge-colouring of K_{γ} , there is either a complete red subgraph with vertex set of order type α , or a complete blue subgraph with vertex set of order type β .

 $R(\alpha, \beta) :=$ least γ such that $\gamma \to (\alpha, \beta)^2$.

Examples

$$\begin{split} R(3,3) &= 6, \ R(3,4) = 9\\ R(\omega,\omega) &= \omega \ (\text{Ramsey's theorem})\\ R(\alpha,2) &= \alpha \ (\text{for all } \alpha) \end{split}$$

・ 戸 ト ・ 戸 ト ・ 戸 ト

Definition

Let α , β and γ be ordinals.

$$\gamma \to (\alpha, \beta)^2$$

means: given a red-blue edge-colouring of K_{γ} , there is either a complete red subgraph with vertex set of order type α , or a complete blue subgraph with vertex set of order type β .

 $R(\alpha,\beta) :=$ least γ such that $\gamma \to (\alpha,\beta)^2$.

Examples

$$\begin{split} R(3,3) &= 6, \ R(3,4) = 9\\ R(\omega,\omega) &= \omega \ (\text{Ramsey's theorem})\\ R(\alpha,2) &= \alpha \ (\text{for all } \alpha)\\ R(\omega+1,3) &= \end{split}$$

伺下 イヨト イヨト

Definition

Let α , β and γ be ordinals.

$$\gamma \to (\alpha, \beta)^2$$

means: given a red-blue edge-colouring of K_{γ} , there is either a complete red subgraph with vertex set of order type α , or a complete blue subgraph with vertex set of order type β .

 $R(\alpha, \beta) :=$ least γ such that $\gamma \to (\alpha, \beta)^2$.

Examples

$$\begin{split} R(3,3) &= 6, \ R(3,4) = 9\\ R(\omega,\omega) &= \omega \ \text{(Ramsey's theorem)}\\ R(\alpha,2) &= \alpha \ \text{(for all } \alpha)\\ R(\omega+1,3) &= \omega \cdot 2 + 1 \ \text{(blackboard)} \end{split}$$

同下 イヨト イヨト

Definition

Let α , β and γ be ordinals.

$$\gamma \to (\alpha, \beta)^2$$

means: given a red-blue edge-colouring of K_{γ} , there is either a complete red subgraph with vertex set of order type α , or a complete blue subgraph with vertex set of order type β .

 $R(\alpha, \beta) :=$ least γ such that $\gamma \to (\alpha, \beta)^2$.

Examples

$$\begin{array}{l} R(3,3) = 6, \ R(3,4) = 9\\ R(\omega,\omega) = \omega \ (\text{Ramsey's theorem})\\ R(\alpha,2) = \alpha \ (\text{for all } \alpha)\\ R(\omega+1,3) = \omega \cdot 2 + 1 \ (\text{blackboard})\\ R(\omega+1,k+1) = \end{array}$$

直 ト イヨト イヨト

Definition

Let α , β and γ be ordinals.

$$\gamma \to (\alpha, \beta)^2$$

means: given a red-blue edge-colouring of K_{γ} , there is either a complete red subgraph with vertex set of order type α , or a complete blue subgraph with vertex set of order type β .

$$R(\alpha, \beta) :=$$
least γ such that $\gamma \to (\alpha, \beta)^2$.

Examples

$$\begin{split} R(3,3) &= 6, \ R(3,4) = 9\\ R(\omega,\omega) &= \omega \ (\text{Ramsey's theorem})\\ R(\alpha,2) &= \alpha \ (\text{for all } \alpha)\\ R(\omega+1,3) &= \omega \cdot 2 + 1 \ (\text{blackboard})\\ R(\omega+1,k+1) &= \omega \cdot k + 1 \ (\text{for all finite } k, \text{ by induction}) \end{split}$$

Why study $R(\alpha, k)$ for countable α and finite k?

Э

- 4 ≣ ▶

Theorem (Specker, 1956)

If γ is countable, then $\gamma \not\rightarrow (\omega + 1, \omega)^2$.

Hence if $\alpha > \omega$ and $R(\alpha, \beta)$ is countable, then β must be finite.

Theorem (Specker, 1956)

If γ is countable, then $\gamma \not\rightarrow (\omega + 1, \omega)^2$.

Hence if $\alpha > \omega$ and $R(\alpha, \beta)$ is countable, then β must be finite.

Proof: put two orderings on γ : the usual one, and one of type ω . Colour an edge xy red iff the orderings agree about x and y.

Theorem (Specker, 1956)

If γ is countable, then $\gamma \not\rightarrow (\omega + 1, \omega)^2$.

Hence if $\alpha > \omega$ and $R(\alpha, \beta)$ is countable, then β must be finite.

Theorem (Erdős-Milner, 1972)

If α is countable and k is finite, then $R(\alpha, k)$ is countable.

Definition

We say an ordinal α is *indecomposable* to mean: if $\alpha = X_1 \cup X_2 \cup \cdots \cup X_k$, then some X_i has order type α .

• • = • • = •

Definition

We say an ordinal α is *indecomposable* to mean: if $\alpha = X_1 \cup X_2 \cup \cdots \cup X_k$, then some X_i has order type α .

Examples (and non-examples)

3

Definition

We say an ordinal α is *indecomposable* to mean: if $\alpha = X_1 \cup X_2 \cup \cdots \cup X_k$, then some X_i has order type α .

Definition

We say an ordinal α is *indecomposable* to mean: if $\alpha = X_1 \cup X_2 \cup \cdots \cup X_k$, then some X_i has order type α .

Definition

We say an ordinal α is *indecomposable* to mean: if $\alpha = X_1 \cup X_2 \cup \cdots \cup X_k$, then some X_i has order type α .

Definition

We say an ordinal α is *indecomposable* to mean: if $\alpha = X_1 \cup X_2 \cup \cdots \cup X_k$, then some X_i has order type α .

Definition

We say an ordinal α is *indecomposable* to mean: if $\alpha = X_1 \cup X_2 \cup \cdots \cup X_k$, then some X_i has order type α .

Definition

We say an ordinal α is *indecomposable* to mean: if $\alpha = X_1 \cup X_2 \cup \cdots \cup X_k$, then some X_i has order type α .

Definition

We say an ordinal α is *indecomposable* to mean: if $\alpha = X_1 \cup X_2 \cup \cdots \cup X_k$, then some X_i has order type α .

Definition

We say an ordinal α is *indecomposable* to mean: if $\alpha = X_1 \cup X_2 \cup \cdots \cup X_k$, then some X_i has order type α .

Lemma

 ω^{α} is indecomposable for all α .

Definition

We say an ordinal α is *indecomposable* to mean: if $\alpha = X_1 \cup X_2 \cup \cdots \cup X_k$, then some X_i has order type α .

Lemma

 ω^{α} is indecomposable for all α .

Proof for countable α : by induction (blackboard).

直 ト イヨ ト イヨ ト

Theorem (Erdős-Milner, 1972)

If α is countable and k is finite, then $R(\alpha, k)$ is countable.

化原因 化原因

Theorem (Erdős-Milner, 1972)

If α is countable and k is finite, then $R(\alpha, k)$ is countable.

They proved: $R(\omega^{1+\alpha}, 2^k) \leq \omega^{1+\alpha \cdot k}$. We prove: $R(\omega^{\alpha}, k+1) \leq \omega^{\alpha \cdot k}$.

Theorem (Erdős-Milner, 1972)

If α is countable and k is finite, then $R(\alpha, k)$ is countable.

They proved: $R(\omega^{1+\alpha}, 2^k) \leq \omega^{1+\alpha \cdot k}$. We prove: $R(\omega^{\alpha}, k+1) \leq \omega^{\alpha \cdot k}$.

Proof: blackboard.

化原因 化原因

Definition

Let α , β and γ be ordinals.

$$\gamma \rightarrow (\alpha, \beta)^2$$

means: given a red-blue edge-colouring of K_{γ} , there is either a complete red subgraph with vertex set of order type α , or a complete blue subgraph with vertex set of order type β .

$$R \quad (lpha, eta) := ext{least } \gamma ext{ such that } \gamma o \quad (lpha, eta)^2.$$

Definition

Let α , β and γ be ordinals.

$$\gamma \rightarrow_{top} (\alpha, \beta)^2$$

means: given a red-blue edge-colouring of K_{γ} , there is either a complete red subgraph with vertex set **homeomorphic** to α , or a complete blue subgraph with vertex set **homeomorphic** to β (using the order topology on γ).

$$R^{top}(\alpha,\beta) := \text{least } \gamma \text{ such that } \gamma \to_{top} (\alpha,\beta)^2.$$

Definition

Let α , β and γ be ordinals.

$$\gamma \rightarrow_{top} (\alpha, \beta)^2$$

means: given a red-blue edge-colouring of K_{γ} , there is either a complete red subgraph with vertex set **homeomorphic** to α , or a complete blue subgraph with vertex set **homeomorphic** to β (using the order topology on γ).

 $R^{top}(\alpha,\beta) := \text{least } \gamma \text{ such that } \gamma \to_{top} (\alpha,\beta)^2.$

For example, a subspace $X \subseteq \gamma$ is homeomorphic to $\omega + 1$ iff X has order type $\omega + 1$ and max $X = \sup (X \setminus \{\max X\})$.

・ 戸 ト ・ 戸 ト ・ 戸 ト

Let α be a countable ordinal and k be a positive integer.

Classical Topological (Caicedo–H, 2015)

Classical	Topological (Caicedo–H, 2015)
ω^{lpha} indecomposable	$\omega^{\omega^{lpha}}$ top-indecomposable
	(Weiss, 1986)

Classical	Topological (Caicedo–H, 2015)
ω^{lpha} indecomposable	$\omega^{\omega^{lpha}}$ top-indecomposable
	(Weiss, 1986)
$R(\omega+1,k+1)=\omega\cdot k+1$	$R^{top}(\omega+1,k+1)=\omega^k+1$

Classical	Topological (Caicedo–H, 2015)
ω^{lpha} indecomposable	$\omega^{\omega^{lpha}}$ top-indecomposable
	(Weiss, 1986)
$R(\omega+1,k+1)=\omega\cdot k+1$	$R^{top}(\omega+1,k+1)=\omega^k+1$
${\it R}(\omega^lpha,k+1) \leq \omega^{lpha \cdot k}$	$R^{top}(\omega+1,k+1) = \omega^k + 1$ $R^{top}(\omega^{\omega^{lpha}},k+1) \leq \omega^{\omega^{lpha \cdot k}}$

Classical	Topological (Caicedo–H, 2015)
ω^{lpha} indecomposable	$\omega^{\omega^{lpha}}$ top-indecomposable
	(Weiss, 1986)
$R(\omega+1,k+1)=\omega\cdot k+1$	$R^{top}(\omega+1,k+1)=\omega^k+1$
$R(\omega^lpha,k+1) \leq \omega^{lpha \cdot k}$	$R^{top}(\omega^{\omega^lpha},k+1)\leq\omega^{\omega^{lpha\cdot k}}$
$R(\omega^{1+lpha},2^k)\leq\omega^{1+lpha\cdot k}$	$(R^{top}(\omega^{\omega^{lpha}},2^k)\leq\omega^{\omega^{lpha\cdot k}}?)$
(Erdős–Milner, 1972)	

Classical	Topological (Caicedo–H, 2015)
ω^{lpha} indecomposable	$\omega^{\omega^{lpha}}$ top-indecomposable
	(Weiss, 1986)
${\it R}(\omega+1,k+1)=\omega\cdot k+1$	$R^{top}(\omega+1,k+1)=\omega^k+1$
$R(\omega^lpha,k+1) \leq \omega^{lpha \cdot k}$	${{\mathcal{R}}^{top}}({\omega}^{{\omega}^lpha},k+1) \le {\omega}^{{\omega}^{lpha\cdot k}}$
$R(\omega^{1+lpha},2^k)\leq \omega^{1+lpha\cdot k}$	$(R^{top}(\omega^{\omega^{lpha}},2^k)\leq\omega^{\omega^{lpha\cdot k}}?)$
(Erdős–Milner, 1972)	
algorithm to compute $R(lpha,k)$	${\sf R}^{top}(lpha,k)<\omega^{\omega}$ for all $lpha<\omega^2$
for all $\alpha < \omega^{\omega}$	$R^{top}(\omega^2,k) \leq \omega^{\omega}$
(Haddad–Sabbagh, 1969)	${\mathcal R}^{top}(\omega^2+1,k+2) \leq \omega^{\omega \cdot k}+1$

Thank you for your attention!

A preprint of our paper is available at http://arxiv.org/abs/1510.00078.